LU FACTORIZATION AND THE LINPACK BENCHMARK ON THE
INTEL PARAGON *

DAVID WOMBLE'!, DAVID GREENBERG!, STEPHEN WHEAT!, AND ROLF RIESEN'

Abstract.

An implementation of the LINPACK benchmark is described which achieves 72.9 Gflop/sec on
1872 nodes of an Intel Paragon. Implications concerning the architecture of the Paragon and the
necessity of a high performance operating system like SUNMOS.

1. Introduction. The LINPACK Benchmark[1] and its kernel computation of
the LU factorization[3] has become a common component of comparisons of high
performance computers. One reason for its popularity is that it represents a core
routine useful for the solving of any dense linear system, such as those which arise in
electromagnetics.

Another reason for the popularity of the LINPACK benchmark is that it stresses
the computational limits of its host machine while still requiring a significant amount
of interprocessor communication. Thus it neither falls into the “embarassingly par-
allel” category nor is so communication bound that the ability of the nodes to do
computation becomes secondary.

The LINPACK “highly parallel compting” benchmark takes as its input an n x n
matrix, A, whose entries are double precision (64bit) floating point numbers and a
vector, b, of length n. It is required to solve the linear system Az = b. The most
commonly used algorithm is to factor A into an upper triangular matrix, U, and a
lower triangular matrix, L such that A = LU. The factorization is then used to
compute the solution vector, z. An important feature of the LINPACK benchmark
is that it requires that the solution pass several accuracy tests. This is a crucial
constraint since there are several theoretical methods of solving the problem which
become numerically unstable with fixed precision arithmetic. More details about the
benchmark and LU are given in Section 3.

It has become standard practice to report LINPACK benchmark results as a
number of flops/sec (e.g. our implementations achieves 72.9 Gflops/sec for a matrix of
order 55,000 using 1,872 nodes). In addition, one also reports the size of the matrix for
which half the speed of the largest matrix is achieved (e.g., order 17,500 in our case).
Since, in most implementations, the overhead of parallelism grows more slowly than
the computation time, it is advantageous to calculate LINPACK benchmark results
using as large a matrix as possible. The use of large matrices is not unreasonable since
a major reason for having high-performance computers is to be able to solve larger
problems. However, the size matrix at which half the speed is achieved gives some
indication of the architectural balance of the machine. A large range of matrix sizes
which achieve at least half peak speed is clearly more desirable than a small range.

Recently it has become apparent that the use of Mflops/sec as a metric can be
misleading. The first question is what should be counted as a floating point operation.
Most studies count the addition, subtraction, or multiplication of two double precision
floating point numbers as one floating point operation. However, on some machines
the number of cycles to do a multiplication is greater than that to do an addition.

* This work was supported by the U.S. Department of Energy and was performed at Sandia
National Laboratories operated for the U.S. Department of Energy under contract No. DE-AC04—
94AL&5000

t Sandia National Laboratories, Albuquerque, NM, 87185

1

Therefore, it is not clear whether counting one flop per addition or multiplication is an
unbiased number. (For computations involving divisions, inverses, and square roots
the disparity can be even greater.) Some researchers have also begun to argue that
other, noncomputational, operations should be counted. If an algorithm can reduce
the amount of time to complete a computation by taking branches which depend on
comparisons of results of earlier operations why should they be “penalized” in the
Mflop number reported.

The standard LINPACK benchmark report[1] sidesteps these questions by assign-
ing a fixed number of flops to a given size matrix (%n?’) regardless of the algorithm
used. While this approach helps a user know on which machine the LINPACK bench-
mark will run fastest, it can obscure the architectural comparison of the machines.
The fact that a more clever algorithm runs faster on machine A than a less clever
algorithm runs on machine B does not tell us much about the relative merits of the
two machines.

In this paper we try to tread a path between the extremes of having a fixed flop
count and having to give a weight to every type of operation. We use the standard
count of %n?’ flops and use only algorithms which use at least this number of floating
point additions and multiplications. However, since the Paragon node architecture
does not treat additions and multiplications equally (see Section 2 for further details)
we feel free to employ algorithmic techniques to change the mix of additions and
multiplications and to reduce the cost of memory loads and stores.

2. The Intel Paragon system. To understand the performance of our LIN-
PACK benchmark code and to understand what the performance tells us about the
Paragon architecture, it is necessary to give a fairly detailed description of the Paragon
currently located at Sandia National Laboratories. Three important components of
the Paragon architecture are the 1860 node architecture, the mesh interconnection
network, and the SUNMOS operating system.

2.1. Node architecture. Each Paragon node contains two i860 microprocessors
[5], 16 or 32 MBytes of DRAM, and hardware to enable access to the interprocessor
communication network. In the original design of the machine it was envisioned that
one 1860 would be used for computation and the other to aid communication. It is
our intention, however, to use both microprocessors to do computation for algorithms
such as LU factorization (see Section 7 for more on the use of the second processor).

Whether one 1860 or two is used for computation, the internal architecture of the
1860 has important effects on performance. The 1860 has two floating point pipelines as
well as an integer pipeline. The floating point addition pipeline can produce a double
precision result every clock cycle while the floating point multiplication pipeline can
produce a double precision result every two clock cycles. Since the integer pipeline
can do index arithmetic it is possible to sustain three floating point operations every
two clock cycles. This yields a peak per processor performance rate of 75 Mflops/sec
for the standard 50MHz clock rate.

Many factors make this 75 Mflops/sec rate difficult to achieve. Foremost is the fact
that it requires that there be exactly two additions done for every multiplication. It
is very rare for a computation to have exactly this ratio. The standard LU algorithm,
for example, performs one addition for each multiplication. Such a 1 to 1 ratio reduces
the peak performance to 50 Mflops/sec/processor. As is explained in Section 3 we can
modify the algorithm to increase the ratio of additions to multiplications but cannot
achieve a 2 to 1 ratio for double precision real arithmetic.

A second important factor limiting performance is memory bandwidth. Executing
three floating point operations every two cycles requires operands to be delivered at a
rate of three, 64 bit words per cycle or 1.2 Gbytes/sec. Although the i860 data caches
are capable of sustaining these rates to the registers the DRAMs cannot provide data
to the caches at this rate. Thus it is crucial that there be reuse of data in the cache. A
standard vector-vector operation (such as BLAS 1 [6]) provides no cache data reuse
and thus reduces peak performance by at least a factor of three. LU factorization
(again, see Section 3 for details) can be cast in terms of matrix-matrix operations
(such as the level 3 BLAS [2]), which allow better cache reuse. However, the use of
matrix—matrix operations complicates the code and may reduce the ability to have
balanced parallelism.

When more than one processor is doing computation on a node, the memory to
cache bandwidth along the internal bus is even more critical. Two processors sharing
memory can also result in memory conflicts although most memory conflicts can be
avoided in the LU code.

A final factor which reduces node performance is the inevitable necessity of doing
some set up code. The calculation of the initial location of arrays, the initial filling of
caches and pipelines, etc. takes time but contributes no flops.

All of these factors contributed to the necessity of using hand-tuned assembler
code for computational kernels in the LINPACK code in order to achieve high perfor-
mance. In our implementation, we use the assembly language BLAS routines supplied
by Intel; the remainder of the code is written in C.

2.2. Interconnection Network. Nontrivial parallel codes require interproces-
sor communication. As stated above, our Paragon consists of nodes connected in a
two-dimensional mesh. The height of the 1840—processor mesh is sixteen nodes and
the width is about 115 nodes. (Some nodes of the machine are ordinarily reserved for
controlling I/O devices but can be used for computation when it is known that no
disk I/O will be done. Thus the number of mesh columns can be increased to 117 for
special runs.)

The network is supported by bidirectional, 200 Mbyte/sec links between mesh
neighbors (i.e. each node is connected to a east, west, north, and south neighbor
unless it is on the edge of the mesh). Router chips allow a message to be forwarded
in “wormhole” fashion between any two nodes in the system without processor inter-
vention. Each node contains two DMA devices, which allow one message to be sent
and one message to be received independent of the CPU’s activity (excepting memory
and bus conflicts).

As in any message passing system there is a significant OS overhead for sending a
message, and much effort has been put into optimizing message passing modules (see
Section 2.3). The application—to—application bandwidth for large messages (larger
than 64 Kbytes) varies between 150 Mbytes/sec and 175 Mbytes/sec. When small
messages are sent or when multiple messages contend for a physical link this band-
width can be further reduced.

The mesh topology makes contention, the desire for more than one message to
use a physical link at the same time, an important issue. Since there are only 16
links connecting the left half of the machine to the right half, any attempt to have
every processor on the left communicate with a partner on the right will cause each
of these links to be shared by 57 messages. The result is a proportional reduction in
bandwidth to less than 3 Mbytes/sec.

In our implementations of the LINPACK benchmark we chose the way in which

3

the matrix elements wer assigned to processors and the way in which broadcasts were
done along rows and columns of the matrix to minimize the effects of contention, but
contention remains an important factor. In addition, we sent very large messages
whenever possible to minimize the effects of communication startups.

2.3. The Sandia/UNM Operating System. There are currently two oper-
ating systems that can be run on the Paragon. We have worked almost exclusively
with SUNMOS (the Sandia/UNM Operating System). There are many reasons for
this choice but the primary ones are that SUNMOS requires very little memory and
it has relative fast message passing.

It was mentioned above that one of our motivating reasons for creating LU fac-
torizations was to be able to solve very large systems. We have done research into
factorizations[7] that use disks to augment central memory but fitting the matrix
into central memory invariably allows for faster and simpler codes. The alternative
operating system (OSF) occupies up to 8 Mbytes of memory per node leaving only
about 8 Mbytes for the application program (on the 16 Mbyte nodes), although OSF
does support virtual memory. In contrast SUNMOS uses less than 256 Kbytes. Thus,
under SUNMOS we could almost double the number of entries in the matrix. On a
single 32 Mbyte node we were able to solve a 2,000 x 2,000 double precision complex
matrix. The matrix uses 32 million bytes, while the OS easily fits in the remaining
memory (the difference between 32 x 22° bytes and 32 million bytes).

In the discussion of network hardware in Section 2.2, it was mentioned that actual
message passing speed can be considerably less than the speed of the physical links
between nodes. A major component of this reduction is due to OS overhead. In
particular the OS may have to buffer incoming messages and then copy them to user
space. This buffering is expensive both in terms of time and in terms of system space
allocated to buffers. It is our experience that SUNMOS does a much better job of
allocating buffer space and of streamlining the entire message passing process. The
result is faster message transmission and less space allocated to buffers.

3. LU factorization and the LINPACK benchmark. The solution of dense
linear systems of equations is a critical kernel in many scientific applications, includ-
ing boundary elements methods for partial differential equations and electromagnetic
scattering. One of the most effective algorithms for this is LU factorization in which
a matrix A is written as the product of a lower triangular matrix L and an upper tri-
angular matrix U. (If pivoting is required, L is logically lower triangular.) The basic
LU factorization algorithm [L, U] = LU (A) [3] is given below, where the matrices A,
L and U are divided into submatrices denoted by subscripts (e.g., A1 1 denotes the
upper left submatrix of A).

[L11, Ur1] = LU (A1)
U= Lf&Al,z
Li»=0
Usy =0
Loy = A2,1Ufll
[La2, Uza) =LU(Az 2 — Lo U1 2).

Once the matrix is factored, the associated linear system can be solved with a forward
substitution and a backward substitution using the matrices L and U respectively.

0 12 3 0 1 2 3 0 1
4 5 6 7T 4 5 6 T 4 5
8§ 9 10 11 8 9 10 11 & 9
12 13 14 15 12 13 14 15 12 13
6 17 18 19 16 17 18 19 16 17
20 21 22 23 20 21 22 23 20 21
24 25 26 27 24 25 26 27 24 25
28 29 30 31 28 29 30 31 28 29
0 12 3 0 1 2 3 0 1
4 5 6 7 4 5 6 7 4 5

Fia. 1. The assignment of mairiz elements to processors in a torus—wrap. A 10 X 10 matriz is
assigned to 32 processors arranged tn a 8 X 4 mesh.

If the standard matrix multiplication algorithm is used, LU factorization requires
2n3/3 + O(n?) floating point operations (multiplication and addition are counted as
separate operations) and forward and back substitution require n? + O(n) floating
point operations each.

Because of the pervasiveness of dense linear systems of equations in scientific
applications, the LINPACK benchmark has become a popular measure of machine
performance [1]. The matrices that are used for this benchmark generally have double
precision, real, random entries. Because the entries are random, partial pivoting
must be used for stability. The benchmark specifications require that the solution be
checked for accuracy using the quantity [|[Az — b||/ (|| A]||z|]), where # is the solution
and b is the right hand side of the system.

The LINPACK benchmark includes categories for solving a 100 x 100 system using
a prescribed FORTRAN program, solving a 1000 x 1000 system using any code (“best
effort”), and solving a system of any size on a parallel computer. Our work is focused
on the third category; the numbers quoted for this category are

Ryaz the performance in Gflops/sec for the largest problem run on a machine
Npae the size of the largest problem run on a machine

Ny the size where half the R,,,, execution rate is achieved

Rpear, the theoretical peak performance in Gflops/sec for the machine.

The computational rates are based on an operation count of 2n3/3 + 2n? regardless
of the method used to solve the system. This opens the door to some creative inter-
pretations of “Gflops/sec”; and readers must use caution in interpreting the results.
In our work, we take care to use algorithms that, in fact, require 2n3/3 + 2n? floating
point operations. Thus, the numbers quoted in this report can be taken as a measure
of the actual speed of the processor.

To obtain the LINPACK benchmark report [1], send mail containing the message
“send performance from benchmark” to netlib@ornl. gov.

4. Implementation. A basic implementation of LU factorization for parallel
computers is described in [4], although changes have been made to adapt the code to
the Paragon (from the nCUBE 2).

The matrix entries are distributed to the processors in a torus—wrap decomposi-
tion (also called a scattered decomposition) as shown in Fig. 1. A square torus—wrap
is known to minimize the communication volume in a parallel implementation of LU
factorization; however, the presence of column—oriented operations such as the pivot

5

search suggest that the minimum overall time for the algorithm is achieved with a
slightly non—square mapping, that is, more processors should be assigned to each
row than to each column. In the case of a 1840 processor Paragon, we choose the
assignment of the matrix entries to processors to match the physical layout of the
processors. This means that each column of the matrix is assigned to 16 processors,
and each row is assigned to 115 processors. If 1872 processors are used, processor
mesh is 16 x 117.

Pseudocode for the Paragon implementation is shown in Fig. 2. From Fig. 2 we

identify four required communication primitives:

1. binary exchange between all processors sharing a column,

2. exchange of the pivot row and diagonal row,

3. broadcast of a row to all processors sharing a column.

4. broadcast of a column to all processors sharing a row,
The binary exchange is synchronizing and must be done a quickly as possible. We use
a logarithmic binary exchange that required [log, p.| steps, where p, is the number of
processors sharing each column. Because the pivot search required a synchronization
of processors sharing a column, the broadcast of a row to all processors sharing a
column must be as fast as possible. Hence, we again use a logarithmic algorithm re-
quiring [log, pc]| steps. In contrast to processors sharing a column, processors sharing
a row do not need to be so tightly synchronized; it is acceptable for the processors
holding column j to slightly lag the processors holding column j — 1. Consequently,
we use a linear broadcast for columns of the matrix. This has the feature that all
processors have the same amount of work in the broadcast, equal to one send and
one receive. Finally, we use point—to—point communication routines supplied by the
SUNMOS operating system for the exchange of the pivot row and diagonal row.

The update of the matrix A, g in Fig. 2 is accomplished using the level 3 BLAS
routine DGEMM, which implements a standard matrix-matrix multiply algorithm
requiring O(n®) operations. (The BLAS library for the Paragon was written by Kuck
and Associates.) An alternative to this would be to update A, g each time through
the loop resulting in a slightly simpler algorithm. The problem with this is that
the lack of data reuse for matrices with one dimension equal to one (i.e., BBS = 1)
results in increased data movement from main memory to the i860 processor swamping
the processor-memory bus. As this dimension increases, bus traffic per floating point
operation decreases until the processor speed becomes the limiting factor. In practice,
we observe that this happens with BBS = 4.

The speed of the DGEMM routine continues to increase as BBS increases; how-
ever, once the processor-memory bus speed is no longer the limiting factor, the in-
efficiency of updating the pivot column of A, s in a separate step using level 1 and
level 2 BLAS routines reduces the speed of the overall algorithm. Thus, for double
precision real matrices, we set the BLAS block size, BBS, equal to 4.

The LINPACK benchmark requires that a linear system be solved, so forward
solve and backward solve routines must be included in the code. Pseudocode for
the forward solver is shown in Fig. 3. The backward solve code is similar. The
forward solve requires only n? + O(n) floating point operations and 4n% + O(n) bytes
of communication. Thus, on the Paragon it is communication bound. The primary
feature of the forward solve algorithm shown in Fig. 3 is that is tries to increase the
communication parallelism by collecting a block of F'SBS consecutive columns of the
matrix into one processor, then passing the right hand side only to those processors
that hold the column blocks. The collection of columns of the matrix can be done

in parallel so the non-overlapped communication is O(n?/FSBS + FSBS). A good
choice of FSBS is ,/p,, where p, is the number of processors that share a row.

5. Results. The algorithm described above has been implemented and run on
the Intel Paragon at Sandia National Laboratories with the computational nodes
running the SUNMOS operating system.

In Table 1, we show the LINPACK benchmark results from our code. In ad-

TABLE 1
LINPACK benchmark results for the Intel Paragon

Number of Rma:c Nma:c N1/2 Rpeak De DPr Rnode
Processors | Gflops/sec order order Gflops/sec Mflops/sec

1872 72.90 55,000 17,500 140.4 16 117 38.9

1024 39.93 42,000 13,000 76.80 16 64 39.0

512 20.50 29,900 9,200 38.40 16 32 40.0

256 10.18 21,000 6,300 19.20 8§ 32 39.8

128 5.197 14,900 4,200 9.600 8§ 16 40.6

64 2.567 10,500 3000 4.800 4 16 40.1

32 1.315 7,500 2100 2.400 4 8 41.1

16 0.662 5,200 1400 1.200 2 8 41.4

8 0.339 3900 950 0.600 2 4 41.8

4 0.170 2760 600 0.300 1 4 42.5

2 0.085 1900 425 0.150 1 2 42.5

1 0.042 1386 250 0.075 1 1 42.6

1 (32 MB) 0.045 2000 275 0.075 1 1 45.0

dition to the numbers specified by the LINPACK benchmark, we list the physical
arrangement of processors and the computational rate achieved on each processor
in Mflops/second. Recall that p. is the number of processors sharing each column,
and p, 1s the number of processors sharing each row. The results above the line
were obtained using 16 Mbyte nodes. The machine does have some 32 Mbyte nodes
and the result below the line was obtained using one of these nodes. We note that
even though the machine has 1840 computational nodes, we were able to use 32 of
the disk nodes for additional computations raising the total to 1872 nodes. We also
note that the R,.q,; numbers are computed based on the hardware peak speed of 75
Mflops/second/processor even though the balanced number of additions and multipli-
cations in the BLAS 3 routine DGEMM prevent the code from achieving more than
50 Mflops/second/processor.

Table 1 shows good scaling of the algorithm with respect to the number of pro-
cessors. There is some fluctuation in the speeds due to the fact that we are not able
to choose the exact optimum decomposition of the matrix in all cases. Specifically,
the best ratio of p, to p. is closer to 2 than to either 1 or 4; however, in the case of
64 or 256 processors, we are not able to use a ratio of 2.

6. Implementation of complex LU factorization. The primary difference
between the complex code and the real code is in the implementation of the BLAS 3
routine ZGEMM for complex matrix—matrix multiply. Because of the architecture of
the 1860 processor, the maximum speed can only be achieved for algorithms having
twice as many additions as multiplications. The ratio of additions to multiplications
in a real matrix—matrix multiply is one, In the case of a complex matrix—matrix

7

multiply, the ratio can be changed using a Winograd algorithm. Specifically, if a, b, ¢
and d are complex numbers with real and imaginary parts denoted by the subscripts
r and 7 respectively, we can compute the quantity d = ¢+ a * b in the following steps.

z1 = (ar + a;)(by + b;)

Zo = a;b,
3 = aibi
d, = ¢, + 22— 23

di=ci+x1—x2— 23

This requires seven additions and three multiplications. If a is constant and b, ¢ and
d are vectors, then the term a, + a; need only be computed outside the inner loop,
reducing the operations per iteration to six additions and three multiplications. Even
though we have achieved the ideal ratio of additions to multiplications, this algorithms
requires nine floating point operations compared to the standard algorithm which
requires eight operations (four additions and four multiplications).

This result can be improved slightly by computing in pairs, that is, computing
quantities of the form d = ¢ 4+ a1by + azbs. The Winograd algorithm above can be
used to perform this operation in 12 multiplications and six additions. Further, if
b1, b, ¢ and d are vectors, two additions can be computed outside the loop leaving
ten additions and six multiplications per iteration. The total of sixteen floating point
operations is thus the same as for the standard algorithm. The 1860 processor requires
twelve clock cycles to do these sixteen operations yielding a theoretical maximum
speed for the ZGEMM routine of 66.7 Mflops/sec.

Another difference is the computation of the pivot. Instead of selecting the entry
from the pivot column with maximum absolute value, |z|, we select the entry with
the maximum |z, | 4 |z].

Finally, to calculate the speed of complex LU factorization, we use an operation
count of 8n3/3 floating point operations. That is, it is the measure of the number of
floating point operations on double precision, real numbers executed each second.

We have run a complex LU factorization (incorporating the differences mentioned
here) on 1840 nodes of the Intel Paragon. The matrix was of size 42, 000 x 42, 000, and
a BLAS block size of two was used. The computational speed was 102.05 Gflops/sec,
or 55.5 Mflops/second /processor.

7. Using the coprocessor. As mentioned in Section 2.1, each node of the
Paragon has two 1860 processors. Although the second processor was originally in-
tended to be used to improve communications, it can also be used as a computational
coprocessor. Most of the floating point operations in the LU algorithm shown in Fig. 2
occur in the operation

Aa,ﬁ = Aa,ﬁ - Va,l:bUlzb,ﬁ~

This can be easily split into two calls to the DGEMM or ZGEMM routine, one of
which can be handled by the coprocessor. We note, however, that both processors
must have access to the full matrix Uy 5.

Several practical conditions must be met before the coprocessor can be used ef-
fectively. First, the BLAS code must be reentrant, that is, each copy of the DGEMM
code must maintain separate local variable so as not to interfere with each other dur-
ing the computations. Second, a larger BLAS block size, BBS must be used. The two

8

processors share the processor-memory bus, and the larger block size is necessary to
reduce the volume of data transfer from each processor. Third, the cache on each pro-
cessor must be used effectively. Each processor should be able to preload large blocks
of data so that it is not interrupted by the other processor during computations.

We have made some preliminary tests using the coprocessor on up to 256 nodes
of the Paragon. These tests indicate that speeds greater than 62 Mflops/second /node
can be sustained, a speedup of approximately 50% over the code that uses only a
single processor per node. Despite the promising results so far, we have postponed
further testing of the coprocessor code until Intel completes a hardware upgrade of
the Paragon. When this upgrade is finished, we will append this report accordingly.

8. Summary. In this paper we have demonstrated that the LINPACK bench-
mark can be implemented effectively on the Intel Paragon (achieving 72.9 Gflops/sec
on 1872 nodes). The existence of efficient implementations of LINPACK benchmark
yields insight into several architectural features of the Paragon: high aspect ratio,
relative speeds of floating point pipelines, and processor-to-memory bus speeds. It
also served to validate the effectiveness of the Sandia/UNM Operating System (SUN-
MOS).

The Paragon at Sandia National Laboratories has a physical arrangement of pro-
cessors with a long aspect ratio, 16 processors by 115 (or more) processors. It was not
clear whether the resulting less than optimal distribution of matrix elements to pro-
cessors would make linear algebra codes inefficient due to increased communication
costs. We were able to achieve better than 92% scaled speed-up on the full machine
thereby demonstrating that the communication costs, including message starups, mes-
sage volume and contention for the communication links, were not overwhelming.

The 1860 processor architecture prevents a code with equal numbers of additions
and multiplications from achieving more than 50 Mflops/sec/node (as opposed to
the theoretical peak of 75). For real double precision matrices the single node peak
performance of 45 Mflops/sec/node was therefore 90% of practical peak. In the case
of complex matrices, we were able to use Winograd’s algorithm on small, sub-matrices
to come closer to matching the architecture’s ideal ratio of additions to multiplications
and thus to achieve more than 60 Mflops/sec/node.

The Paragon node architecture relies on internal cache to bridge the gap between
processor-to-memory bus speed and CPU speed. However, long vector operations
common in many LU implementations render the cache ineffective. We were not able
to circumvent all vector operations (such as those used in pivot searches) but could
convert others to level 3 BLAS matrix-matrix operations which made better use of
the cache. The use of level 3 BLAS operations did, however, somewhat reduce the
parallel efficiency.

The ability of LINPACK codes to adapt to these architectural features should
not, however, be taken as evidence that all codes can do so. Applications which
do not lead to dense linear systems may have difficulty achieving as high per node
computation rates.

The processor-to-memory bus speed is also a critical issue in the use of multiple
processors on each node. To fully use the capability of the nodes, data must be made
available to the processors at sufficiently high rates; use of two processors almost
doubles the demands on the bus. For the matrix operations (level 3 BLAS), we have
used larger block sizes to overcome this problem, although inefficiencies are introduced
elsewhere; however, for vector operations (level 1 BLAS) this is not an option, and
more than one processor cannot be used efficiently.

9

Our ability to achieve high LINPACK benchmark performance and to experiment
with dual processor mode was dependent on our use of SUNMOS. The designers of
SUNMOS have concentrated on fast communications and small OS memory size. The
result has been an OS which allows scientific computations to make more efficient use
of the hardware and to solve larger problems.

Acknowledgments. We would like to thank Mack Stallcup, Mike Proicou and
Mark Rogers from Intel for the support they have provided to the project. We would
also like to thank Greg Henry of Intel for help in obtaining reentrant BLAS routines
for using the coprocessor.

REFERENCES

[1] J. DONGARRA, Performance of various computers using standard linear equation software,
Tech. Rep. CS-89-85, University of Tennessee, 1993.

[2] J. DoNncARRA, J. D. Croz, S. HAMMERLING, AND 1. DUFF, A set of level 3 basic linear
algebra subprograms, TOMS, 16 (1990), pp. 1-17.

[3] G. H. GoLus anD C. F. VAN LoaN, Matriz Computations, Johns Hopkins University Press,
2nd ed., 1989.

[4] B. A. HENDRICKSON AND D. E. WOMBLE, The torus—wrap mapping for dense mairiz calcu-
lations on massively parallel computers, SIAM J. Sci. Stat. Comput., (1994, to appear).

[5] INTEL CORP. SUPERCOMPUTER SYSTEMS DI1VISION, Intel Paragon User’s Guide, Beaverton,
OR, October 1993.

[6] C. Lawson, R. Hanson, D. Kincaip, aND F. KroGH, Basic linear algebra subprograms for
FORTRAN usage, TOMS, 4 (1979), pp. 308—-323.

[7] D. WoMBLE, D. GREENBERG, S. WHEAT, AND R. RIESEN, Beyond core: Making paral-
lel computer I/O practical, in Procedings of the 1993 Dartmouth Institute for Advanced
Graduate Studies in Parallel Computation, Santa Clara, CA, June 1993, Springer—Verlag.

10

/* Processor ¢ owns row set « and column set 5 */
/* BBS is the block size for BLAS 3 operations */

b:=0

FOR j=1ton

b=b+1
/* Update column j and find pivot row */
IF j € § THEN
IF b > 0 THEN
Aa,j = Aa,j - Va,l:bUlzb,j
ENDIF
7! = maxjeq |A; ;|
binary exchange of v¢ to compute y = max, 7?
s := index of row containing the entry =

ENDIF

/* Generate update vector, from column j of A */
IF j € 8 THEN

A j = Aaj/7

IF j € « THEN

Ajji=r* Ay

ENDIF

Broadcast V, 3 := A, ; and s to processors sharing rows «
ELSE

Receive V, 3 and s

ENDIF

/* Exchange pivot row and diagonal row and broadcast pivot row */
IF j € « THEN
Send wg := A; s to processor owning A; g
ENDIF
IF s € « THEN
Receive wg
Broadcast row Uy g := A, s to processors sharing columns

Asyﬁ = 'lUﬁ
ELSE

Receive Uy g
ENDIF
IF j € « THEN

Ajyﬁ = Ubﬁ
ENDIF

/* Remove j from active rows and columns and update A */
a:=a\ {j}
B =p\{i}
IF b = BBS THEN
Aayﬁ = Aayﬁ - Va,l:bUlzb,ﬁ
b:=0
ENDIF

ENDFOR

Fi1G. 2. Parallel LU facldrization for processor q.

/* Processor ¢ owns row set o and column set 3 of L */
/* L is a lower triangular matrix with unit diagonal */
/* b is the right hand side vector */
IF ¢ holds b, THEN

send b, to processor holding column F'SBS
ENDIF

FOR j = FSBS to n step FSBS
/* Collect columns of matrix */
FOR k=1 to FSBS
IF k+ 37— FSBS € 3 THEN
send Ly p4+j—FsBs to processor holding column j
ENDIF
IF j € 8 THEN

receive V, 3 from processor holding column k + j — F.SBS

ENDIF
ENDFOR

/* Update right hand side */

IF j € 3 THEN
receive b, from processor holding column j — FSBS
bj—psBs+1j = Lj_—lFSBS-H:j,j—FSBS-H:jbj—FSBS+1
a=a\{j—FSBS+1:j}
B:=p\{j—FSBS+1:j}
bsg:=bg — Lgj_FsBs+1:j0j—FsBs+1:j
send b, to processor holding column F'SBS

ENDIF

ENDFOR

Fia. 3. Parallel forward solver for processor q.

12

